Lead Corrosion & Control

Rengao Song, Bill Robertson, Brad Montgomery, and Justin Sensabaugh

Acknowledgement

Richard Brown, Michael Schock, & LWC Staff

Presentation Outline

- Background
- Corrosion chemistry in drinking water
- Corrosion control methods
- Bench-top corrosion research tools
- Long-Term LCR Revisions and impacts
- Take home messages
- LCR monitoring case study -LWC

Daily Lead Intake: Water vs Other Sources

Drinking water normally is not a major source of lead exposure. It can be a significant source under the condition of lead service line with no corrosion control.

Water Lead/LSLs Correlated to Blood Lead: Europe

- Lead in water > 5 ppb significantly increased blood lead (p > 0.001) in young women, and intervention excluding tap water a few months dropped blood lead 37% (Fertmann et al., 2004)
- Children in France (6 months-6 years) had 50% higher blood lead if they consumed tap water and had an LSL, and the 95%'ile blood lead level for this group was increased by 256% (Etchevers et al., 2014)

Historical Corrosion Management

- Iron corrosion
 - Prevent Tuberculation
 - Prevent pipe loss
 - Prevent red water
- Controlled by
 - Ferric oxides & calcium carbonate films at pH >8
 - Polyphosphate addition –NOT orthophosphate

Historical Corrosion Management

- Copper corrosion
 - Prevent pitting corrosion
 - Prevent uniform (general) corrosion
- Controlled by
 - Prevent microbiological growth
 - Maintaining low DIC/high pH
 - Allowing time for films to form
 - Orthophosphate ongoing treatment but must be maintained

Lead Sources from Water Service Connections

Lead in Drinking Water

Water with Dissolved Lead and Lead Particulate

Abrasion

- Physical disturbances
 - Meter installation/replacement or damaged
 - Service line repair or partial replacement
 - External shut-off valve repair/replacement
 - Street excavation or construction near the house
 - Any part of home plumbing system disturbance
- Hydraulic factors
 - Significant flow changes
 - Flow reversals
 - Pressure transients

Corrosion Basics

- Corrosion in drinking water: An electrochemical interaction between metal surface and water, resulting in metal release into water
 - Reduction @ Cathode: $2e^{-} + 1/2O_2 + H_2O = 2OH^{-}$
 - Oxidation @ Anode: Me = 2e⁻ + Me²⁺
- Types of corrosion
 - General or uniform
 - Non-uniform: galvanic, pitting, microbial
- Complex processes
 - Pipe material and plumbing practice
 - Water quality factors (pH, DIC, ORP, PO₄³⁻, Cl⁻ and SO₄²⁻ ...)
 - Hydraulic conditions

Lead Eh-pH Diagram in Water

(DIC=18 mg/L & Pb=0.010 mg/L)

Impact of pH and DIC on Pb and Cu

8

pН

9

10

7

0.001

6

Higher pH better for both

 Optimal DIC for Pb depends on pH

 Lower DIC better for Cu at all pH > ~7.2 and for Pb at pH >~8.2

How to Minimize Corrosion

- pH/alkalinity/DIC
 - High pH and low DIC
- Orthophosphate (PO₄)
 - Best at pH 7.2 to 7.8
 - Issues: microbial? wastewater P?
- Form insoluble Pb(IV) scale
 - High oxidation state, e.g., via maintenance of free chlorine residual
- CI/SO4 Ratio
 - Higher chloride-to-sulfate mass ratio (CSMR) tends to increase lead release under the conditions of galvanic corrosion
 - CSMR<0.5

pH Adjustment

- Pb and Cu release generally decreases with pH increase from solubility point of view under most conditions. Raise pH in 0.3 unit increments towards 9-9.5 is recommended by EPA as a Pb control strategy if current pH is >7.8 and DIC >5 mg C/L
- pH adjustment may not always work when
 - pH not high enough throughout DS and need buffering (water blending, nitrification, CO2 exchange in tanks)
 - Dissimilar material on pipe surface or other corrosion mechanisms

Orthophosphate Application

Effect of CSMR

 Higher chloride-to-sulfate mass ratio (CSMR) tends to increase lead release under the conditions of galvanic corrosion

 A threshold CSMR of 0.5 was reported: Significant lead leaching may occur when CSMR > 0.5

Bench Scale Research Tools

- Two Types of coupons can be used
 - Non-galvanic solder (NGS) coupon 50:50
 Pb:Sn solder, 1" /1/8" (L/D), epoxied to the bottom of a 120 mL glass jar
 - Galvanic solder (GS) coupon -50:50 Pb:Sn solder placed inside copper coupling (right picture)
 - 50:50 Pb:Sn solder 1"/1/2" (L/D)
 - Cu coupling 1.2"/5/8" (L/D)

pH Effect on Pb Release

(Average lead levels over 2 month study)

CSMR and pH Effect on Pb Release

(Average lead levels over 2 month study)

Lead and Copper Rule (LCR)

- Promulgated 1991
- Sample "first flush" in selected homes with great likelihood of high Pb levels (LSLs or Pb solder)
- Number of locations depends on system size
- Action Level (AL)
 - 0.015 mg/L for Pb, 1.3 mg/L for Cu
 - Exceedance of is NOT an MCL violation, but can trigger other actions (TT)
 - Optimized Corrosion Control Treatment (OCCT)
 - Water quality parameter (WQP) monitoring
 - public education, and
 - lead service line replacement (LSLR)
- 2000 & 2007
 - Minor revisions rule framework basically unchanged

Long-Term LCR

- Long-Term LCR (LT-LCR)
 - Scheduled to be proposed by USEPA sometime in 2013 2014 2015 2017?
 - Likely promulgated two years later
 - May include
 - Revisions to sampling
 - New or re-emphasized OCCT
 - PLSLR and other LSL issues
 - AL?

LTLCR - Potential Impact of Revisions

- Some systems currently in compliance need to
 - Re-assess current OCCT
 - Change OCCT
- Change LSL replacement activities
- Repeat OCCT studies (pipe loops)
- Separate Cu and Pb
- Only or More LSLs as Tier 1 sites
- Change sampling protocol
- Lower AL
- More WQP
 - More sites
 - Higher frequency
 - Use control charts
- Public Education

90th Percentile Lead Levels: All vs LSL Only

Balancing Multiple Regulations: DBP Example

Take Home Messages

- Personal involvement from top management
- A WQ team from across the company
- A WQ surveillance team with internal and external customers
- Be proactive: 5Cs (character, comprehensiveness, communication, commitment, and creativity)
- Define WQ signal from noise
- Review historical data to calculate 90th percentile using only LSL locations
- Profile (ten 1L samples) at selected homes
- Investigate high velocity flushing after LSL replacement
- If close to AL or ~8 ppb, look at Pb control alternatives (PO4)

Take Home Message

Three levels of WQ issues (Result-code)

- System-wide: treatment plant related (water source or and/or source WQ changes, treatment changes/loss of treatment control, unstable water leaving the plant(s)
- Area-wide/Zip code: distribution tanks/reservoirs, major water-main breaks, downstream low demand, nitrification, etc.
- Individual customers: low water use homes may perpetually have high lead; stagnation can affect protective scales within LSLs; LSL disturbances happen daily

Distribution water quality management

- Customers drink tap water not finished water in clear wells
- Water quality can change as it travel from the plant to customer taps: pH drop, nitrification, bio-chemical reactions

LCR-Year Monitoring Case Study

- Develop strategy to improve site representativeness and sample integrity – Noise Reduction
- Establish team involving all key departments
- Historical data review
- Identify factors that may inadvertently alter sample representativeness – False Signal
- Irregular/abnormal distribution and/or residential disturbances
- Customer performs the sampling

LCR-Year Monitoring Case Study

3C's Required For Success: <u>Communication + Commitment + Collaboration</u>

Quarter	LCR Tasks
Q1	 Form team with support from executive leadership Establish communications with team members & state regulators Initiate surveying of LCR sample sites
Q2	 Collect field & residential information to finalize sample list Verbal & written communications with customers Upload all LCR sample sites into Go!Sync mapping tool for field users Begin sample collection: coordinate delivery & pick-ups of samples
Q3	 Continue sample collections through September Laboratory analysis and reporting Customer result notifications
Q4	Calculate 90 th percentiles, finalize all reporting

TIMELINE	LCR TASKS
JAN - MAR	 Establish quarterly meetings (Engineering, Water Quality, Plant Operations, Public Relations, Distribution Logistics, GIS) Establish communication with KYDOW: identify regulator overseeing LCR Use service line records to generate initial list of LSL locations spatially representative of entire DS Field verify LSL by visual confirmation in the vault Finalize initial list of LSL locations that could be registered as LCR sites Set up billing credit with Accounting for participation Monitor bi-weekly WQP at treatment plant
APR - MAY	 Quarterly meeting Records inquiry for residential information Gather field information in proximity to LCR sites locations Finalize LCR sampling locations Verbal communications with selected customers (2 weeks prior to collection) Upload all potential site locations into Go!Sync Mapbook Prepare for laboratory analysis (contract or in house); receive supplies, preservatives, etc Review customer sampling procedures Monitor bi-weekly WQP at treatment plant Collect WQP DS samples 2 weeks apart
JUN - SEPT	 Quarterly meeting Monitor bi-weekly WQP at treatment plant Send 1st 6-month WQP data to KYDOW Communicate with customer to coordinate delivery & pick-ups Confirm no recent activity within sampling zone Map updates (Mapbook): update active sites, remove sites as samples are collected Deliver lead collection kits with sampling instructions to selected sites Collect minimum of 50 samples (equal #: 25 LSL + 25 LSC) Register new sites with KYDOW Laboratory analysis & reporting Customer result notification provided within 30 days of receiving result Certify results notification to the KYDOW: no later than 3 months following the end of the monitoring period (12/30 or earlier)
OCT - DEC	 Quarterly meeting Monitor bi-weekly WQP at treatment plant Send Lead and Copper results (plus 90th % sheet) to KYDOW by October 10th Collect WQP DS samples 2 weeks apart Send 2nd 6-month WQP data to KYDOW

Sample Sites Selection

- Spatial representation of wide DS
- Field verification of LSL
- Identify significant DS impacts in proximity of sample site within a 3 month period prior to collection
- Gather residential information: shut offs, water usage, contact information
- Customer communications: verbal commitment to participate, details about residence, schedule sample collection
- Offer \$20 billing credit as incentive

Customer Incentives Sponsored by Water System (credit card, credit on water bill, other incentive)

